25,050 research outputs found

    Assessing Evapotranspiration Estimates from the Global Soil Wetness Project Phase 2 (GSWP-2) Simulations

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We assess the simulations of global-scale evapotranspiration from the Global Soil Wetness Project Phase 2 (GSWP-2) within a global water-budget framework. The scatter in the GSWP-2 global evapotranspiration estimates from various land surface models can constrain the global, annual water budget fluxes to within ±2.5%, and by using estimates of global precipitation, the residual ocean evaporation estimate falls within the range of other independently derived bulk estimates. However, the GSWP-2 scatter cannot entirely explain the imbalance of the annual fluxes from a modern-era, observationally-based global water budget assessment, and inconsistencies in the magnitude and timing of seasonal variations between the global water budget terms are found. Inter-model inconsistencies in evapotranspiration are largest for high latitude inter-annual variability as well as for inter-seasonal variations in the tropics, and analyses with field-scale data also highlights model disparity at estimating evapotranspiration in high latitude regions. Analyses of the sensitivity simulations that replace uncertain forcings (i.e. radiation, precipitation, and meteorological variables) indicate that global (land) evapotranspiration is slightly more sensitive to precipitation than net radiation perturbations, and the majority of the GSWP-2 models, at a global scale, fall in a marginally moisture-limited evaporative condition. Finally, the range of global evapotranspiration estimates among the models is larger than any bias caused by uncertainties in the GSWP-2 atmospheric forcing, indicating that model structure plays a more important role toward improving global land evaporation estimates (as opposed to improved atmospheric forcing).NASA Energy and Water-cycle Study (NEWS, grant #NNX06AC30A), under the NEWS Science and Integration Team activities

    Fault tolerant quantum key distribution protocol with collective random unitary noise

    Full text link
    We propose an easy implementable prepare-and-measure protocol for robust quantum key distribution with photon polarization. The protocol is fault tolerant against collective random unitary channel noise. The protocol does not need any collective quantum measurement or quantum memory. A security proof and a specific linear optical realization using spontaneous parametric down conversion are given.Comment: Accepted by PRA as a Rapid Communicatio

    Evolutionary outcomes for pairs of planets undergoing orbital migration and circularization: second order resonances and observed period ratios in Kepler's planetary systems

    Full text link
    In order to study the origin of the architectures of low mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range (1-4)\ \rmn{M}_{\oplus}. These evolve for up to 2\times10^7 \rmn{yr} under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow ircularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few %\% terminating in second order resonances. Both planetary eccentricities were small <0.1< 0.1 and all resonant angles liberated. This type of survey produced only a limited range of period ratios and cannot reproduce Kepler observations. When circularization alone operates in the final stages, divergent migration occurs causing period ratios to increase. Depending on its strength the whole period ratio range between 11 and 22 can be obtained. A few systems close to second order commensurabilities also occur. In contrast to when arising through convergent migration, resonant trapping does not occur and resonant angles circulate. Thus the behaviour of the resonant angles may indicate the form of migration that led to near resonance.Comment: 15 pages, 12 figures, 2014, MNRAS, 449, 304

    Low Temperature Superfluid Response of High-Tc Superconductors

    Full text link
    We have reviewed our theoretical and experimental results of the low temperature superfluid response function of high temperature superconductors (HTSC). In clean high-Tc materials the in-plane superfluid density rho_s^{ab} varies linearly with temperature. The slope of this linear T term is found to scale approximately with 1/Tc which, according to the weak coupling BCS theory for a d-wave superconductor, implies that the gap amplitude scales approximately with Tc. A T^5 behavior of the out-of-plane superfluid density rho_s^c for clean tetragonal HTSC was predicted and observed experimentally in the single layer Hg-compound HgBa_2CuO_{4+delta}. In other tetragonal high-Tc compounds with relatively high anisotropy, such as Hg_2Ba_2Ca_2Cu_3O_{8+delta}, rho_s^c varies as T^2 due to disorder effects. In optimally doped YBa_2Cu_3O_{7-delta}, rho_s^c varies linearly with temperature at low temperatures, but in underdoped YBa_2Cu_3O_{7-delta}, rho_s^c varies as T^2 at low temperatures; these results are consistent with our theoretical calculations.Comment: 26 pages, 8 figure

    Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials

    Full text link
    We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure

    Analytic Expression for Exact Ground State Energy Based on an Operator Method for a Class of Anharmonic Potentials

    Full text link
    A general procedure based on shift operators is formulated to deal with anharmonic potentials. It is possible to extract the ground state energy analytically using our method provided certain consistency relations are satisfied. Analytic expressions for the exact ground state energy have also been derived specifically for a large class of the one-dimensional oscillator with cubic-quartic anharmonic terms. Our analytical results can be used to check the accuracy of existing numerical methods, for instance the method of state-dependent diagonalization. Our results also agree with the asymptotic behavior in the divergent pertubative expansion of quartic harmonic oscillator.Comment: LaTeX with six figure (gif) files; Submitted to Phys. Rev.
    corecore